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Abstract Four idealised dynamic systems, which are used as analogues in earthquake and
geotechnical engineering, are studied: an elastic single-degree-of-freedom (sdof) oscillator;
an elastic–perfectly-plastic sdof oscillator; a rigid block resting in simple frictional contact
on a horizontal base; and a rigid block resting on a sloping plane. They are subjected to sev-
eral near-fault-recorded ground motions bearing the effects of ‘forward-rupture directivity’
and fault surface dislocation (‘fling-step’) phenomena—long-period acceleration pulses and
large velocity or displacement steps. Two types of idealized wavelets (the Mavroeidis & Papa-
georgiou and the Ricker wavelets) are optimally-fitted to each record, applying the match-
ing procedure presented by Vassiliou and Makris (Bull Seismol Soc Am 101(2):596–618,
2011). Extensive comparisons between the accelerogram response and the corresponding-
fitted wavelets response show if and when the destructive pulse-like part of the records is
indeed their most deleterious component, and if and when this destructiveness can be cap-
tured with the particular fitted wavelets. For the two purely inelastic systems, in particular,
the comparison elucidates the role of the contained pulses in the size of sliding displace-
ments. The results reveal that while the response of elastic and elasto-plastic sdof systems
to the wavelets is usually reasonably similar with the response to the actual records, this is
not usually the case for the two purely inelastic (sliding) systems. The unpredictable con-
sequences of seismic shaking on such systems, even if the shaking intensity and frequency
content were precisely known, is best demonstrated with the sensitivity of the size of sliding
displacement to the polarity (+ or −), the sequence and number of cycles, and even the details
of the excitation.
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List of symbols

AC Critical yielding acceleration of the block
A(t), AH Acceleration time-history, and maximum acceleration
D(t), D Sliding displacement time-history, and maximum sliding displacement
Dres Residual (permanent) displacement
DM&P Maximum sliding displacement induced by the Mavroeidis & Papageorgiou

wavelet
DRICKER Maximum sliding displacement induced by the Ricker wavelet
pI Pulse indicator (Vassiliou and Makris 2011)
s A scale parameter that controls the dilation/contraction of the wavelet
SA Response spectral acceleration
T The period of a single degree of freedom oscillator
V (t) Ground velocity time-history
�V Velocity step
γ A parameter that controls the oscillation character of the wavelet
β Angle of the inclined plane measured from the horizontal
ζ Damping ratio
ξ Translation time of wavelet
ϕ Wavelet’s phase angle
τ Time duration of a pulse
k Stiffness
μF Coulomb’s constant coefficient of friction
μstr Ductility (ratio of total elastic plus plastic over elastic displacement)

1 Introduction: The nature of near-fault ground motions

Near-fault ground motions of major seismic events usually contain severe ‘directivity’ and
‘fling’ pulses. The former are the result of coherently arriving seismic waves whenever
the fault ruptures towards the site—which is known as ‘forward-rupture directivity’ (Bolt
1976; Singh 1985; Somerville et al. 1996; Somerville 2000, 2003; Abrahamson 2001). Large
permanent displacement of a record results from the tectonic permanent offset of the earth
in the proximity of the seismogenic fault rupture—‘fling step’ (Abrahamson 2000; and Bolt
2004; Mavroeidis and Papageorgiou 2010).

Figure 1 portrays, with two selected seismic records as examples, some fundamental
characteristics of near-fault motions. In case of a strike–slip earthquake (as sketched for
example at the top of Fig. 1), the “signature” of forward rupture directivity appears in direction
normal to the fault (record of JMA during the Kobe earthquake); whereas, the fling step is
significant in the parallel component of motion in close proximity to the fault, especially if the
latter emerges on the surface with a large static offset (Yarimca record, Kocaeli earthquake).
Motions with only forward-directivity pulses terminate with no permanent displacement, as
depicted with the JMA record (fault-normal component) of the 1995 Kobe (Japan) earthquake.
The deeper nature of the two phenomena has been investigated analytically in a seminal paper
by Hisada and Bielak (2003).

Such motions have the potential to inflict large irrecoverable deformations on structural
and/or geotechnical systems, especially on those characterized by a plastic rather than elastic
behaviour (Garini et al. 2011; Gazetas et al. 2009). The ultimate aim of this paper is to answer
the question: how significant is the dominant large-duration pulses of a near-fault record for
the damage that such a record may inflict on various types of structures. In other words, is
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Fig. 1 Schematic explanation of the ’fling-step’ and ‘forward-directivity’ phenomena as reflected in the two
sets of acceleration and displacement time histories

it only this single, dominant pulse that causes the large displacement, or is it perhaps the
whole sequence of pulses (which constitute a particular record) that play an equally or more
significant role? To achieve this goal, eleven near-fault records (listed in Table 1) are used.
To each record a single wavelet is “optimally” fitted by utilizing the method developed by
Vassiliou and Makris (2009, 2011). Comparison of the responses due to the real motions and
their corresponding wavelets sheds light on the unique significance of the near-fault pulses.
It is emphasized however, that our conclusions strictly rely on the success of wavelet fitting
on the actual accelerograms.
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Table 1 List of near-fault earthquake records utilized as excitations in this study

Earthquake, magnitude Record name pga (g) pgv (m/s) pgd (m)

Kobe—Japan,
MW = 7.0 (16 January 1995)

Fukiai 0.763 1.232 0.134

Takatori-0◦ 0.611 1.272 0.358

Northridge—California,
MW = 6.8 (17 January 1994)

Newhall Firestation-360◦ 0.589 0.753 0.182

Rinaldi-228◦ 0.837 1.485 0.261

Chi-Chi Taiwan,
MW = 7.5 (20 September 1999)

TCU 052-EW 0.350 1.743 4.659

TCU 068-NS 0.353 2.892 8.911

Kocaeli—Turkey,
MW = 7.4 (17 August 1999)

Sakarya-EW 0.330 0.814 2.110

Yarimca-60◦ 0.231 0.906 1.981

Duzce—Turkey,
MW = 7.2 (12 November 1999)

Duzce-270◦ 0.535 0.835 0.516

Christchurch—New Zealand,
MW = 6.3 (24 February 2011)

CCCC-N64E 0.473 0.710 0.215

REHS-S88E 0.713 0.874 0.271

2 Approximating accelerograms with best-fitted wavelets

The selected near-fault motions are used as base excitations from each of which two wavelets
are “extracted”: (i) a Ricker wavelet and (ii) a Mavroeidis and Papageorgiou (2003) wavelet.
The method of wavelet analysis introduced by Vassiliou and Makris (2009, 2011) is used for
the wavelet fitting. Their optimization process attempts to capture the major near-fault pulses
of the motions, not the details. Then each of the 11 near-fault accelerograms (shown in Fig. 2)
and their corresponding 22 idealized wavelets excite the four fundamental systems (of Fig. 3).

Elastic and elastoplastic acceleration spectra for the simple (sdof) oscillator and sliding
spectra for the symmetric and asymmetric rigid-plastic systems represent the consequences
of the near-fault motions. The agreement or disagreement between these spectra of the actual
records and those of their wavelet approximations is investigated. Detailed time-histories
of the sliding response are examined to develop a deeper understanding of the phenomena
involved.

A list of “severe” near-fault records utilized in our study, is given in Table 1 along with their
peak parameters. The term “severe”, is meant to emphasize the selection of near-fault motions
that contain “deleterious” pulses: either of large duration, or of high-amplitude, or of both.
The selection was among the records with the strongest (not the average) near-fault effects.

In the Vassiliou and Makris (2009, 2011) wavelet fitting procedure “energetic” acceleration
pulses and their associated frequency and amplitude are extracted from a record in the form
of fitted wavelets. Their approach extended the standard wavelet transform to a more general
transform, by incorporating a phase modulation together with a cycle number and symmetry
manipulation to the already typical functions (wavelet translation and dilation–contraction)
of the standard wavelet transform.

In brief, the extended wavelet transform is defined as:

C (s, ξ, γ, ϕ) = w (s, γ, ϕ)

∞∫

−∞
A(t)·ψ

(
t − ξ

s
, γ, ϕ

)
dt (1)
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Fig. 2 Acceleration time histories of the utilized excitations in terms of actual recordings, and of their fitted
M&P and Ricker wavelets

where s is the scale parameter that controls the dilation or contraction of the wavelet, ξ is
the translation time (thus the movement of the wavelet along the time axis), γ is a parameter
that controls the oscillatory nature of the signal, ϕ is the phase angle, ψ(t, s, ξ, γ, ϕ) is the
wavelet function, and A(t) is the acceleration time history. The quantity w(s, γ, ϕ) outside
the integral in Eq. (1) is a weighting function. For the purposes of this study, w(s, γ, ϕ) is
formed to ensure that all wavelets at every scale s have the same energy. In particular, for
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(a) (c) (d)(b)

Fig. 3 The fundamental systems (“analogues”) studied in the paper with their restoring force-displacement or
moment–rotation relations: a visco-elastic oscillator; b elasto-plastic oscillator; c ideally rigid-plastic sliding
on a horizontal plane; and d ideally rigid-plastic sliding on an inclined plane. μF = coefficient of friction,
μ = ductility = plastic over elastic displacement ratio

the Mavroeidis & Papageorgiou (M&P) wavelet the weighting function w(s, γ, ϕ) is equal
to:

w (s, γ, ϕ) = 1√
1
8 s

[
2γ + 6γ 3 + cos(2ϕ)·sin(2πγ )

π(1−4γ 2)

] (2)

The full mathematical definition and properties of this extended wavelet transform are
presented in the paper of Vassiliou and Makris (2009, 2011).

Two types of wavelets are employed in this study:

• The symmetric Ricker wavelet (2nd derivative of Gaussian, also called “Mexican Hat”):

ψ

(
t − ξ

s

)
=

[
1 −

(
t − ξ

s

)2
]

exp

[
−1

2

(
t − ξ

s

)2
]

(3)

• The general M&P wavelet (2003):

ψ

(
t−ξ

s
, γ, ϕ

)
=

[
sin

(
2π

sγ
(t−ξ)

)
cos

(
2π

s
(t−ξ)+ϕ

)
+γ sin

(
2π

s
(t−ξ)+ϕ

)]
·

[
1 + cos

(
2π

sγ
(t − ξ)

)]
(4)

Recall that the latter wavelet derives from the Gabor wavelet by replacing the Gaussian
envelope with a cosine function. Thanks to its polyparametric nature, the M&P wavelet can
be either symmetric or asymmetric depending on the exact shape of the targeted section of
the record (Mavroeidis and Papageorgiou 2010). And it also has a number of cycles as needed
for a close fit.

Our choice of (only) these two types of wavelets is based on the quantitative evaluation of
seven wavelets presented by Vassiliou and Makris (2009, 2011). For a wide number of records,
Vassiliou & Makris investigated the matching ability of seven wavelets and concluded that
the M&P wavelet attained the highest score—hence our selection. However, a symmetric
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wavelet, like the Ricker pulse expressed by Eq. (3), seemed a decent representative of less
severe “more typical” wavelets—thus our second choice.

The dual scope of this paper is to examine the level of success of the fitted wavelets to pre-
dict the elastic, elastoplastic, and rigid-plastic response induced by the real accelerograms;
and in the process to evaluate the significance of the dominant pulses on the response. Previ-
ous studies that also examine the elastic and inelastic response triggered by near-fault motions
when approximated with pulselike wavelets, are presented by Makris and Black (2004a,b,c),
Makris and Psychogios (2006), and Karavasilis et al. (2010). However, in these studies the
emphasis is given to the structural response of single- and multi-story steel moment resisting
frames.

The selected accelerograms (listed in Table 1) and the corresponding pairs of fitted
wavelets are shown superimposed in the plots of Fig. 2. Notice the flexibility of M&P
wavelet and its capability to achieve an intensely asymmetric shape, for example in the
Takatori, Newhall and Rinaldi records.

3 The fundamental elastic and inelastic analogues

The four fundamental analogues of Fig. 3 represent in generic form some fundamental struc-
tural and geotechnical systems, and include: the single degree of freedom (sdof) elastic
oscillator (of mass m, stiffness k, and damping coefficient ζ ), the sdof elastic–perfectly-
plastic oscillator whose restoring force is linear up to an ultimate capacity Fu and constant
thereafter leading to an inelastic displacement expressed through its ductility, μstr (the ratio
of system’s total elastoplastic over its elastic displacement). Several applications especially
in geological and geotechnical engineering require understanding of dynamic sliding, rep-
resented here by a rigid block of mass m supported on seismically vibrating base. The case
of symmetric friction is modelled with a block sliding on a horizontal base. The frictional
resistance is F = ±μmg, whereμ is the (presumed constant) coefficient of Coulomb friction
at the block–base interface. The analysis of the response of the block to motion A(t) is a
straightforward application of Newton’s law of motion along with rigid-body kinematics. It is
a process well understood and need not be further discussed. We will call critical acceleration,
AC = μg, the one beyond which slippage initiates.

For asymmetric friction the block rests on an inclined plane (angle β). The frictional
resistance (for excitation acting parallel to the slope) is F1 = mg(μcosβ − sinβ) when the
block slides downward, and F2 = mg(μcosβ + sinβ) when it slides upward. Therefore,
the critical acceleration for downhill slippage is AC1 = (μcosβ − sinβ) g, and for uphill
AC2 = (μcosβ + sinβ)g.

Thanks to the transient nature of earthquake loading A(t), even if the base were to expe-
rience a number of acceleration pulses in the upward or downward direction higher than
the critical values AC1 or AC2, this would only lead to finite sliding displacements downs-
lope or upslope respectively. For small values of the angle β (for β < 5◦), when AC2 is
not much larger than AC1, it is quite possible that slip may occur in both directions. But
for larger angles, as is appropriate for natural slopes: AC2 >> AC1 and sliding occurs only
downhill—hence, the accumulated residual slip is simply the sum of the individual slip-steps.

The asymmetric sliding analogue, a rigid block on inclined plane, has numerous appli-
cations in geotechnical engineering: seismic performance of earth dams and embankments,
gravity retaining walls, landslides, landfills with geosynthetic liners, and concrete gravity
dams (Newmark 1965; Ambraseys and Sarma 1967; Makdisi and Seed 1978; Richards and
Elms 1979; Sarma 1975, 1981; Lin and Whitman 1983; Wilson and Keefer 1983; Constanti-
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nou et al. 1984; Constantinou and Gazetas 1987; Ambraseys and Menu 1988; Leger and
Katsouli 1989; Yegian et al. 1991; Gazetas and Uddin 1994; Harp and Jibson 1995; Fenves
and Chopra 1986; Kramer 1996; Kramer and Smith 1997; Yegian et al. 1998; Bray and Rathje
1998; Crespellani et al. 1998; Rathje and Bray 1999; Sarma and Kourkoulis 2004).

In addition to the obvious use of the presented results in a number of real-life seismic
structural and geotechnical problems, we think of the block-on-horizontal or inclined-plane
model as representing systems with strongly and purely inelastic behavior. It will be shown
that such systems are particularly sensitive to both ‘directivity’ and ‘fling’ related pulses—far
more so than the elastic systems.

4 Structural response: analyses and comparisons

By wavelet matching of records, we intent to capture the most essential pulse-like charac-
teristics of the original accelerogram. A way to quantify the effectiveness of this wavelet
approximation is through the acceleration response spectrum—a frequency range represen-
tation of sdof elastic response. The next two figures address the response of a purely elastic
(Fig. 4) or an elastic–perfectly-plastic oscillator (Fig. 5) in terms of response spectral accel-
eration, SA, versus period, T . For each record, three acceleration response spectra curves are
shown: for the original accelerogram (black line), for the corresponding M&P wavelet (bold
grey line), and for the Ricker wavelet (bold black line).

As illustrated in Fig. 4, the agreement between the elastic spectra of the wavelets and
the original motions is satisfactory in some cases and unsatisfactory in others. Specifically,
for the accelerograms of TCU-052EW, Fukiai, Newhall 360◦, Rinaldi 228◦, CCCC-N64E
and REHS-S88E, an almost surprisingly good agreement is achieved for the entire period
range, despite the conspicuous differences in their time histories. The reason is that all these
records exhibit distinctive, well-defined directivity and/or fling acceleration pulses which
can be clearly detected and captured with the two types of wavelets. In stark contrast, with
the TCU-068NS record while the Ricker response spectrum barely agrees with the original
in the period range of 0.7–1.2 s and diverges widely at longer periods, the M&P spectrum
matches the original in the long period range of 3.5–8 s but fails dramatically at shorter
periods. The reason for this can be visualized in the comparison of Fig. 2 between the real
and the fitted motions: the M&P wavelet captures the very long-duration fling-related pulses
of the recorded motion between the 6 and 10 s, but completely ignores the short-duration
peaks at t = 4–6 s. The Ricker wavelet does exactly the opposite.

For the elastoplastic 1-dof system, the sets of three acceleration spectra are given in Fig. 5.
Here, the imposed ductility demand, μstr = 2, is defined as the ratio of the developing total
(elastic plus plastic) displacement over the elastic displacement. The conclusions drawn for
the elastic spectra in the previous paragraph are valid for the bilinear sdof system as well.
Notice that the absolute values of spectral acceleration are roughly half of the elastic ones,
as expected.

In conclusion, the elastic and moderately-inelastic response spectra of the Ricker and M&P
wavelets are often but not always in broad agreement with the spectra of the original records.

5 Rigid-plastic systems: analyses and comparisons

The fundamental difference of the sdof oscillator from the sliding block systems stems
from the inherent plasticity of the frictional behaviour, which dominates the response. It is
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Fig. 4 Elastic acceleration spectra, SA , of a single degree of freedom oscillator with damping ratio ζ = 5 %.
With the bold black line is illustrated the response triggered by the Ricker fitted wavelet, whereas with the
bold grey line the response of the M&P wavelet fit. Both are compared with the acceleration response induced
by the original record

interesting to see whether the sliding displacements are influenced by the details of the input
motion, in other words if the sequence of acceleration cycles omitted in the wavelet fitting
process affect the slippage and to what extent. A limited number of analyses are shown here
in detail (Figs. 6, 7, 8, 9, 10, 11, 12, 13), but the results of all analyses are compiled in
Fig. 14 to offer a complete overview.

Figure 6 compares the sliding behavior of a mass on a horizontal plane shaken by: (i) the
fling-step—affected Yarimca accelerogram (recorded close to the Anatolia fault which rup-
tured about 3 km away in the Kocaeli 1999 earthquake), and (ii) the fitted M&P wavelet. The
sliding response is presented in terms of acceleration, velocity and slippage time-histories.
The critical acceleration of the block is chosen as AC = 0.05 g (i.e., coefficient of fric-
tion 0.05), meaning that no higher acceleration can be transmitted to the block. The 60◦-
component of the Yarimca record exhibits a peak ground acceleration of merely 0.23 g.
However, as indicated in Fig. 6, it attains a significant velocity pulse with duration ≈4.3
s and a velocity step �V ≈ 1.33 m/s—such velocity characteristics bear the signature of
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Fig. 5 Inelastic acceleration spectra, SA , of a single degree of freedom oscillator with plasticity indexμstr =
2, and damping ratio ζ = 5 %. With the bold black line is illustrated the response triggered by the Ricker
fitted wavelet, whereas with the bold grey line the response of the M&P wavelet fit. Both are compared with
the acceleration response induced by the original record

both forward-rupture directivity and of fling step. As a result, the peak sliding displacement
reaches 0.41 m. When ‘Yarimca’ is approximated with the M&P wavelet (right handside
of Fig. 6), the maximum slippage drops only slightly to 0.36 m—unsurprisingly, since this
wavelet matches faithfully the velocity of the original pulse. The duration of the velocity
pulse from 4.30 s (in the original) increases to 4.90 s (in the wavelet), but the velocity step
from the original 1.33 m/s drops to 1.17 m/s. Therefore, this wavelet captures the essential
characteristics of the excitation (same impulse�V×τ , where τ is the pulse duration), leading
to similar maximum slippage. Notice that the discussed figure refers to the smallest critical
acceleration AC = 0.05 g. However, we expect the same good or bad convergence between
fitted and actual slippage to be more-or-less valid for larger values of AC. Because as the
yielding acceleration increases the details of the accelerogram play a less important role, and
hence it is the major acceleration pulses that dominate the behaviour. Therefore the fitted
pulses (which indeed approximate the major acceleration pulses) result in slippage closer to
the actual one.
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Fig. 6 Acceleration, velocity and sliding displacement (block minus base displacement) time histories induced
by: a the Yarimca-60◦ ground motion, and b the fitted M&P wavelet to this motion (AC = 0.05 g, β = 0◦)

Now, would a similarly good agreement be true for asymmetric sliding?
As illustrated in detail in Fig. 7, the final slippage of the block on top of a 25◦ sloping

plane subjected to the Yarimca record reaches 0.83 m, whereas the M&P fitted wavelet leads
to merely 0.38 m. One of the causes is evident in the velocity time-histories: the first sliding
period starting at 6 s until 8.6 s is similar in the original record and the M&P wavelet; but
the following velocity sequence of pulses after t = 9 s, while present in the original record,
is missing from the fitted wavelet. Hence, a total of five additional sliding events after the
first major one occur with the Yarimca record (see left handside of Fig. 7), leading to a total
slippage accumulation of 0.83 m. Of course, the velocity peak of the wavelet is some 30 %
smaller than the real peak, causing an underestimation of the first major slippage from about
0.55–0.38 m.
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by: a the Yarimca-60◦ ground motion, and b the fitted M&P wavelet to this motion (AC = 0.05 g, β = 25◦)

A complete presentation of the symmetric sliding response to the Takatori ground motion
(component 0◦ of the 1995 Kobe earthquake and its fitted wavelets is illustrated in Fig. 8
for five values of the critical sliding acceleration AC (0.05, 0.1, 0.2, 0.3, and 0.4 g). Notice
that while the fit of both wavelets is very poor for critical accelerations up to 0.2 g, the fit
significantly improves for higher values of AC. The explanation is straightforward: for AC

values smaller than 0.2 g a large number of acceleration cycles in the original motion induce
sliding of the rigid body, whereas for AC larger than 0.2 g the slippage is mainly triggered
by the large-period acceleration pulse at around 6 s. With the Ricker and M&P pulses we
approximate adequately this large-period pulse, while all the rest acceleration details are
neglected. Therefore, for AC > 0.2 g the response of the fitted wavelets are closer to the
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actual one. However, the acceleration pulse sequence of each particular ground motion is
unique, so we could not draw a single upper “limit” of AC after which the fitted wavelets
could estimate reliably slippage.

Figures 9, 10 and 11 show the symmetric and asymmetric sliding response triggered
by the Rinaldi motion (component 228◦) recorded in the Northridge (1994) event. Rinaldi
is a most characteristic forward-rupture directivity affected motion: a long–duration, high–
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a the Rinaldi-228◦ ground motion, and b the fitted M&P wavelet to this motion (AC = 0.10 g, β = 0◦)

amplitude acceleration cycle (starting at about 2 s until 4 s, with an absolute peak amplitude of
0.82 g) prevails—apparently the result of superposition of “simultaneously” arriving seismic
waves from the fault rupturing towards the site (Bertero et al. 1978; Somerville et al. 1996,
1997; Abrahamson 2000, 2001; Somerville 2000, 2003). The potential to inflict damage of
this acceleration cycle is revealed in the velocity time history: a substantial velocity step
�V = 2.40 m/s. Yet, for a critical sliding acceleration AC = 0.10 g, Rinaldi induces a
peak slippage of merely 0.37 m and an insignificant permanent displacement of 0.05 m (left
handside of Fig. 9). This peak slippage of 0.37 m, due entirely to the major directivity cycle,
is perfectly matched by the M&P wavelet despite its somewhat smaller velocity step (2.17
m/s instead of 2.40 m/s).
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The same trend is noticed for sliding on an inclined plane, as pictured in Fig. 10. The
Rinaldi record is now approximated by a Ricker wavelet which leads to an accumulated
slippage amounting to 1.44 m, barely missing the “target” of 1.66 m of the complete record.

However, another important aspect of asymmetric sliding is the polarity effect—the effect
of reversing a motion’s sign. A geotechnical analogue related to polarity is the dynamic
response of two identical slopes located “across the street” and hence subjected to the same
excitation (see sketch in Fig. 12). In the particular case of Rinaldi as shown in Fig. 11,
the influence of polarity on slippage is enormous: reversal of excitation doubles the sliding
response. Evidently, ‘directivity’ and ‘fling’ pulses of near-fault strong motions are inherently
asymmetric, thereby aggravating the asymmetry of the slippage on inclined base. The reader
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reversed Rinaldi-228◦ ground motion, and b the fitted Ricker wavelet (AC = 0.05 g, β = 25◦)

can appreciate the fact that regardless of the + or − sign a record has a single elastic
response spectrum, and a single Arias Intensity, Housner Intensity, etc. But the induced
sliding displacements are quite different.

Figure 12 portrays the asymmetric sliding spectra induced by: (a) the Rinaldi record when
imposed with the two polarities—hence the two thin black curves; (b) the fitted M&P wavelet
also with two polarities—the two bold grey curves; and (c) the fitted Ricker pulse with two
polarities—the two bold black lines. As expected, good agreement between the slippage due
to the record and the two matching wavelets is obtained for large values of critical yielding
acceleration AC, and hence small values of slippage (moderate inelasticity). For small values
of AC (i.e. for strongly inelastic systems) the disparity between the six curves is conspicuous.
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response due to changing polarity from + to −

Another simple but revealing example of the importance of polarity on asymmetric sliding
is portrayed in Fig. 13. The TCU 068-NS record (1999 Chi-Chi) is the excitation. Figure 13
illustrates the slippage time-histories in response to the original record and the two fitted
wavelets. First, regarding the acceleration histories: the ‘flinged’ record of TCU 068-NS
(PGA ≈ 0.35 g) is approximated with a long period M&P wavelet (PGA ≈ 0.13 g, merely
one-third of the PGA) and with a high frequency Ricker wavelet (PGA ≈ 0.30 g, near the
true PGA). In other words, the TCU 068 accelerogram is approached by two “opposite”
perspectives in terms of frequency content. The response shows that it is the long period
M&P wavelet that comes much closer to reality (although not close enough), as summarized
in the sliding spectra of Fig. 14. Evidently, the Ricker wavelet misses completely the huge
impulse �V × τ (where τ is the pulse duration) of the record between about 3–10 s.

A summary of all the numerical analyses performed in this study for the symmetric and
asymmetric sliding is displayed in Fig. 14. Sliding spectra for inclination angle β = 25◦
are plotted without reversing polarity for the sake of clarity. Notice that the in some of
the records the sliding response is in reasonable agreement with the corresponding wavelet
sliding spectra, but in several others the deviation ranges from moderate to huge.
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6 Compilation of results and the pulse indicator

The pulse indicator, pI, is an index introduced by Vassiliou and Makris (2011): a qualitative
and quantitative measure of a wavelet’s similarity to a record, and its ability to retain the
most destructive features of the record. Pulse indicator, pI, is defined as:

pI = 1

2
(ea + ev) (5)

where ea is a measure used to evaluate the capability of a wavelet to locally match the pre-
dominant acceleration pulse of the accelerogram A(t):

ea =
∫ ∞
−∞ A(t) · λ (s, ξ) · ψ(t)dt∫ ∞

−∞ A2(t)dt
(6)

and ev is the corresponding velocity ratio, defined as:

ev =
∫ ∞
−∞ V (t) · υ(t)dt∫ ∞

−∞ V 2(t)dt
(7)
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where V (t) is the recorded ground velocity time-history, and υ(t) is the velocity pulse of
the matching wavelet acceleration pulse. The remaining symbols have been defined after
Eqs. 1–4.

Table 2 lists the values of the acceleration matching index, ea, velocity matching index,
ev , and pulse indicator, pI, for the 11 records of our study. A few important observations can
be made: First, for a record whose fitted wavelet produces large (>0.30) values for both ea

and ev , the wavelet-induced sliding displacements are in close agreement with those of the
original record. For example, the Fukiai record for which the Ricker and the M&P wavelets
achieve ea and ev values that are both greater than 0.40. In fact, if a wavelet approximates the
most significant features of a record successfully, it will display ea and ev values larger than
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Table 2 Acceleration matching index, ea , velocity matching index, eV , and the pulse indicator, pI, for each
record

Record name M&P wavelet Ricker wavelet

ea eV pI ea eV pI

Fukiai 0.44 0.54 0.49 0.44 0.66 0.55

Takatori-0◦ 0.34 0.46 0.40 0.28 0.37 0.33

Newhall Firestation-360◦ 0.40 0.34 0.37 0.25 0.19 0.22

Rinaldi-228◦ 0.49 0.67 0.58 0.49 0.61 0.55

TCU 052-EW 0.62 0.07 0.35 0.68 0.09 0.38

TCU 068-NS 0.34 0.69 0.51 0.16 0 0.08

Sakarya-EW 0.10 0.06 0.08 0.13 0.05 0.09

Yarimca-60◦ 0.22 0.52 0.37 0.42 0.87 0.64

Duzce-270◦ 0.20 0.05 0.13 0.13 0.02 0.07

CCCC-N64E 0.44 0.45 0.44 0.48 0.54 0.51

REHS-S88E 0.54 0.41 0.47 0.48 0.48 0.48

The fitted pulse can be either a Ricker or a M&P wavelet

0.30–0.40 (Vassiliou and Makris 2011). Second, only a large acceleration index, ea , is not an
indicator of a wavelet that can adequately describe the sliding response. For instance, with
the TCU 052-EW record the fitted M&P wavelet achieves a substantial acceleration index
ea = 0.62 but the velocity index is extremely low (ev = 0.07 << 0.4). And indeed, as has
been shown earlier, sliding due to the actual record deviates substantially from that due to
the wavelet.

To visualize better the above, Figs. 15 and 16 depict for symmetric and asymmetric sliding
respectfully the ratio of the wavelet triggered slippage, DM&P or DRICKER, divided by the real
sliding displacement D, as functions of the critical sliding acceleration AC. If a wavelet trig-
gered slippage coincided with the actual, the aforementioned slippage ratio would be unity:
a perfect agreement. Now, for sliding on horizontal plane, notice in Fig. 15a that the induced
slippage of the Rinaldi record (shown with triangles) is very similar with the slippage due to
M&P wavelet; with pulse indicator pI = 0.58, the largest of all cases ! Notice that the sliding
response ratio, DM&P/D, is very close to unity for all AC values. Naturally the agreement
seams not so perfect with asymmetric sliding (Fig. 16), where the Rinaldi DM&P/D ratio is
about 0.75 (with pI of course remaining 0.58). That is obviously a shortcoming of the pulse
index definition: it can not distinguish the response on horizontal and inclined plane; hence
pI can not capture the effects of reversing polarity. On the contrary, the Düzce approximation
results to small values of DM&P/D (solid squares) in accord with their poor pulse indicator,
pI = 0.13. Additional observations can be readily made from the plots of Figs. 15 and 16.

To sum up, the pulse indicator (Eqs 5-7) seems to be a reasonable and successful measure
of the wavelet matching process, not only for elastic systems but also for the strongly inelastic
and even strongly asymmetric systems.

7 Summary and conclusions

Earthquake response of four fundamental analogues, representative of a wide variety of
structural, geotechnical, and geological systems, have been subjected to several near-fault
ground motions and two fitted wavelets, the M&P and Ricker.
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Fig. 15 Summary of results for the symmetric sliding displacement, D, induced by an original recorded
motion normalized by the slippage triggered by: (i) the fitted M&P wavelet, DM&P , and (ii) the Ricker fitted
wavelet, DRICKER.

Forward-rupture directivity and fling-step affected near-fault motions, containing ‘severe’
acceleration pulses and/or large velocity steps, have been shown to lead to strong response
of elastic and merely of inelastic systems. Sliding systems being of rigid-plastic nature with-
out elasticity, may experience a profound and unpredictable slippage from such motions,
especially if their “strength” (critical yielding acceleration or coefficient of friction) is
small. Most interesting, changing the polarity of such an excitation may have a dramatic
effect on the accumulating slip. This is a conclusion that should be recalled in field post-
earthquake reconnaissance, when trying to explain different degrees of damage suffered by
similar man-made or natural “structures” in close proximity to one another but with different
orientation.

Comparison between the response to actual records and the response to the fitted wavelets
has shown that whereas the elastic response is not very sensitive to the motion details and
the wavelet approximation is thus satisfactory, sliding systems are quite sensitive not only
to the exact pulse-like characteristics retained in a fitted wavelet, but also to the detailed
sequence of pulses and the number of accelerogram’s cycles. The pulse indicator (introduced
by Vassiliou and Makris 2011) seems to be an efficient measure of the matching wavelet
ability, even for sliding systems.
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